UNAM
Usted está aquí: Inicio / Actividades académicas / Carrusel actividades académicas / Seminario Nacional de Geometría Algebraica en línea

Seminario Nacional de Geometría Algebraica en línea

Seminario virtual, IMUNAM, Oaxaca
Miércoles 27 de junio de 2025 a las 15:00 horas
Kirsten Wickelgren, Duke University
"Quadratic Gromov-Witten invariants of rational del Pezzo surfaces of degree >5"

https://www.matem.unam.mx/~lozano/eseminar.html

Resumen: Quadratic Gromov-Witten invariants allow one to obtain an arithmetically meaningful count of curves satisfying constraints over a field k without assuming that k is the field of complex or real numbers. They were developed in joint work with Kass, Levine, and Solomon in genus 0 for del Pezzo surfaces. In joint work with Erwan Brugallé and Johannes Rau, we give a complete calculation of these invariants for k-rational del Pezzo surfaces of degree greater than 5.

Moreover, we give these invariants the structure of an unramified Witt invariant for any fixed surface and degree. We then construct a multivariable unramified Witt invariant which conjecturally contains all of these invariants for k-rational surfaces. To prove the conjecture for del Pezzo surfaces of degree greater than 5 and obtain the calculation, we study the behavior of these Gromov-Witten invariants during an algebraic analogue of surgery on del Pezzo surfaces. We obtain a surprisingly simple formula when uncomputable terms cancel out with an identity in (twisted) binomial coefficients in the Grothendieck-Witt group. This is joint work with Brugallé and Rau.

  • Seminario Nacional de Geometría Algebraica en línea

    Seminario Nacional de Geometría Algebraica en línea

    ZOOM