UNAM
Usted está aquí: Inicio / Actividades académicas / Coloquios / Coloquio de Ciudad Universitaria / Actividades del Coloquio / Computational Complexity and Explanations in Physics

Computational Complexity and Explanations in Physics

Ponente: Scott Aaronson
Institución: Universidad de Texas en Austin
Tipo de Evento: Investigación

Cuándo 17/03/2026
de 12:00 a 13:00
Dónde Auditorio "Alfonso Nápoles Gándara"
Agregar evento al calendario vCal
iCal

The fact, or conjecture, of certain computational problems being intractable (that is, needing astronomical amounts of time to solve) clearly affects our ability to learn about physics.  But could computational intractability also play a direct role in physical explanations themselves?  I'll consider this question by examining three possibilities:

(1) If quantum computers really take exponential time to simulate using classical computers, does that militate toward the many-worlds interpretation of quantum mechanics, as David Deutsch famously proposed?

(2) Are certain speculative physical ideas (e.g., time travel to the past or nonlinearities in quantum mechanics) disfavored, over and above any other reasons to disfavor them, because they would lead to "absurd computational superpowers"?

(3) Do certain effective descriptions in physics work only because of the computational intractability of violating those descriptions -- as for example with Harlow and Hayden's resolution of the "firewall paradox" in black hole thermodynamics, or perhaps even the Second Law of Thermodynamics itself?

archivado en: