Seminario de Probabilidad y Procesos Estocásticos
Asymptotic Independence via Malliavin-Stein Method
Leandro Pimentel, Universidade Federal do Rio de Janeiro
Salón 13 en el primer piso del Edificio C. IIMAS.
https://www.matem.unam.mx/actividades/seminarios/probabilidad-y-procesos-estocasticos/actividades/asymptotic-independence-via-malliavin-stein-method
Leandro Pimentel, Universidade Federal do Rio de Janeiro
Salón 13 en el primer piso del Edificio C. IIMAS.
https://www.matem.unam.mx/actividades/seminarios/probabilidad-y-procesos-estocasticos/actividades/asymptotic-independence-via-malliavin-stein-method
Resumen:
How far is the distance between the joint measure of a two-dimensional random vector and the product measure induced by its marginals? In this talk we consider this question in the context of a Markov process within the KPZ universality class, where the first coordinate of the vector is given by an observable of a Brownian initial condition, and the second one is an observable of the process at a later time. To attack this task we will use tools from Malliavin calculus and Stein’s Method, which will allow us to get a precise space-time scaling behavior for asymptotic independence. This is a joint work with Sergio I. López (available from https://arxiv.org/abs/2208.14987).