UNAM
Usted está aquí: Inicio / Actividades académicas / Seminarios Institucionales / Seminario de Ecuaciones Diferenciales No Lineales (SEDNOL) / Actividades del Seminario de Ecuaciones Diferenciales No Lineales / Asymptotical qualitative properties of the optimal principal eigenvalue in weighted Neumann problems

Asymptotical qualitative properties of the optimal principal eigenvalue in weighted Neumann problems

Ponente: Benedetta Pellacci
Institución: Università degli Studi della Campania Luigi Vanvitelli
Tipo de Evento: Investigación

Cuándo 09/06/2022
de 11:00 a 11:45
Dónde Zoom (liga en la descripción)
Agregar evento al calendario vCal
iCal

The optimization of the principal eigenvalue of indefinite weighted problems settled in bounded domains arises as a natural task in the study of the survival threshold for a species in population dynamics. We study the minimization of such eigenvalue, associated with Neumann boundary conditions, performing the analysis of the singular limit in case of arbitrarily small favourable region. We show that, in this regime, the favourable region is connected and it concentrates on the boundary of the domain. Though widely expected, these properties are still unknown in the general case. This is a joint research with Dario Mazzoleni and Gianmaria Verzini.


Liga de Zoom:

https://cuaieed-unam.zoom.us/j/89946525336?pwd=K3FtTytiaVNsZFBBcHlRMjFiVWZFUT09

Meeting ID: 899 4652 5336
Passcode: 570119